

Олимпиада Юношеской математической школы II тур, 19 декабря 2021 года 10 класс. Основная аудитория

Сюжет 1.

Вася посмотрел на граф G на n вершинах и поставил на каждую вершину v переменную x_v . После чего рассмотрел выражение

$$f(x_1, \dots, x_n) = 2 \cdot \frac{\sum_{i=1}^{n} x_i x_j}{\sum_{i=1}^{n} x_i^2}.$$

Пусть m и M — минимум и максимум f.

- **1.1.** Пусть степень каждой вершины в графе равна d. Найдите M.
- **1.2.** Докажите, что вершины графа G можно покрасить в [M]+1 цвет, так что любые две соседние вершины получат разные цвета.

Сюжет 2.

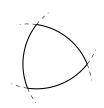
Назовем множество A, состоящее из натуральных чисел, *многочленным*, если существует многочлен f(x) с целыми коэффициентами, так что множество положительных значений f(x) в целых точках совпадает с A.

- ${f 2.1.}$ Докажите, что множество A, состоящее из всех четных натуральных чисел и единицы не является многочленным.
- 2.2. Покажите, что любое конечное множество является многочленным.

Сюжет 3.

На плоскости зафиксирована замкнутая кривая C, состоящая из дуг окружностей и отрезков, ограничивающая выпуклое множество. Кривая называется nceedookpyychocmbo, если ее можно получить из C с помощью растяжения (сжатия) относительно точки и параллельного переноса (но не поворота или центральной симметрии!). (Например, если C — правильный шестиугольник, то псевдоокружностями окажутся все правильные шестиугольники со сторонами параллельными исходному.)

3.1. Пусть C является объединением трех дуг окружностей с центрами в вершинах правильного треугольника и проходящими через две другие вершины (см. картинку). Может ли псевдоокружность касаться всех сторон квадрата (то есть каждая сторона имеет хотя бы одну общую точку точку с псевдоокружностью и не имеет общих точек с внутренностью) так, чтобы центр треугольника совпал с центром квадрата?



3.2. Пусть кривая C центрально-симметрична. Псевдоокружности *касаются*, если их границы имеют хотя бы одну общую точку, а внутренности не пересекаются. Докажите, что существуют три равные попарно касающиеся псевдоокружности.

Олимпиада Юношеской математической школы II тур, 19 декабря 2021 года 10 класс. Выводная аудитория

Сюжет 1.

Вася посмотрел на граф G на n вершинах и поставил на каждую вершину v переменную x_v . После чего рассмотрел выражение

$$f(x_1, \dots, x_n) = 2 \cdot \frac{\sum_{i=1}^n x_i x_j}{\sum_{i=1}^n x_i^2}.$$

Пусть m и M — минимум и максимум f.

1.3. Пусть Z — максимум выражения $g = \sum_{(i,j) \in E(G)} x_i x_j$ при неотрицательных x_i с суммой 1. Докажите, что

$$Z = \frac{1}{2} \left(1 - \frac{1}{w} \right),$$

где w — максимальный размер множества вершин графа G, попарно соединенных ребрами.

1.4. Пусть степень каждой вершины в графе G равна d, а S — некоторое множество вершин, никакая пара которых не соединена ребром. Докажите, что

$$|S| \leqslant \frac{n \cdot |m|}{d + |m|}.$$

Сюжет 2.

Назовем множество A, состоящее из натуральных чисел, *мультимногочленным*, если существует такой многочлен $f(x_1, x_2, \ldots, x_n)$ с целыми коэффициентами, что множество положительных значений $f(x_1, x_2, \ldots, x_n)$ в целых точках совпадает с A.

- ${f 2.3.}$ Докажите, что множество A, состоящее из всех четных натуральных чисел и единицы является мультимногочленным.
- 2.4. Докажите, что пересечение мультимногочленных множеств тоже мультимногочленно.

Сюжет 3.

На плоскости зафиксирована замкнутая кривая C, состоящая из дуг окружностей и отрезков, ограничивающая выпуклое множество. Кривая называется nceedookpyженостью, если ее можно получить из C с помощью растяжения (сжатия) относительно точки и параллельного переноса (но не поворота или центральной симметрии!). (Например, если C — правильный шестиугольник, то псевдоокружностями окажутся все правильные шестиугольники со сторонами параллельными исходному.)

- **3.3.** Пусть C является объединением трех дуг окружностей с центрами в вершинах правильного треугольника и проходящими через две другие вершины (см. картинку). Докажите, что существуют круги X, Y и Z, что для любых трех вершин из разных кругов не существует псевдоокружности, проходящей через них.
- **3.4.** Пусть кривая C центрально-симметрична. Псевдоокружности *касаются*, если их границы имеют хотя бы одну общую точку, а внутренности не пересекаются. Какое максимальное количество равных псевдоокружностей может попарно касаться (в зависимости от C)?